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Abstract: Cardiac regeneration strategies and de novo generation of cardiomyocytes have long been significant 
areas of research interest in cardiovascular medicine. In this review, we outline a variety of common cell sources 
and methods used to regenerate cardiomyocytes and highlight the important role that key Circulation Research 
articles have played in this flourishing field. (Circ Res. 2014;114:21-27.)
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Heart disease, whether inherited or acquired, is the lead-
ing cause of mortality in men and women worldwide, 

accounting for 17.3 million deaths per year.1 The urgent need 
to improve existing therapies has driven researchers to seek a 
better understanding of the diverse but inter-related mechanis-
tic origins of heart development and failure, with the ultimate 
goals of identifying novel pharmacological treatments and cell-
based engineering approaches to replace damaged heart tissue. 
Animal models are widely used as surrogates for studying hu-
man disease, both in order to recapitulate the complex clinical 
course of human heart failure and to generate in vitro tools 
for studying specific aspects of tissue dysfunction.2 Although 
useful insights have been gained, experimental findings from 
animal models have not always extrapolated to human disease 
presentation because of considerable species variation.3 Here, 
we describe prominent routes taken toward the goal of cardiac 
regeneration by focusing on key contributing articles published 
by Circulation Research in the 60 years since its establishment.

Multipotent Adult Stem Cells
Multipotent adult stem cells have been the focus of most pre-
clinical and clinical studies performed to date in the field of 
cardiac regeneration. They represent an attractive source of 
stem cells because they are relatively abundant, accessible, and 

autologous, and their mechanisms of action for any observed 
improvement in cardiac function can be potentially delineated. 
In 1998, Anversa and Kajstura4 published a  field-changing ar-
ticle challenging the notion that the myocardium is a nonregen-
erating tissue by describing the presence of multipotent cardiac 
stem cells (CSCs) in the adult myocardium that are positive for 
the hematopoietic progenitor marker c-kit (Figure 1). Methods 
for isolating functionally competent CSCs and mechanisms 
proving that their activation can reverse cardiac dysfunction 
were later published by the same group.5,6 It was this pioneer-
ing work and the ability to adequately expand CSCs ex vivo 
that formed the basis for the first randomized clinical trial of 
CSC implant in patients with ischemic heart disease (SCIPIO 
trial).7 Phase I of the trial demonstrated a sound safety pro-
file and potential for efficacy in improving ventricular func-
tion. In 2004, Messina et al8 were able to isolate and expand 
 c-kit+ CSCs from adult murine hearts as self-adherent clusters 
of progenitor cells, termed cardiospheres. This isolation tech-
nique later became feasible for human hearts and was used 
to test the therapeutic efficacy of cardiosphere-derived cells 
in the CADUCEUS trial.9 The phase I trial demonstrated a 
good safety profile and potential for reducing scar size and re-
gional function compared with controls. More recently, Dey 
et al10 performed detailed characterization of multiple stem cell 
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populations and concluded that c-kit+ CSCs represent the most 
primitive population of multipotent cardiac progenitors when 
compared with bone marrow–derived c-kit+ populations, and 
that cardiosphere-derived cells are more closely related to bone 
marrow stem cells in terms of their gene and protein expres-
sion profiles. The exact mechanistic and functional outcome 
implications of such differences are not yet known but may aid 
ongoing clinical trials in understanding the biology of these 
promising cell populations.

Bone marrow–derived mononuclear cells (MNCs) have also 
garnered considerable interest in regenerative cell therapy be-
cause they are easily accessible, autologous and require mini-
mal expansion. Significantly, evidence of MNC mobilization 
after myocardial infarction in mice has supported that bone 
marrow cells play a role in myocardial healing after injury.11,12 
Randomized human clinical studies of injected MNCs demon-
strated a modest increase in left ventricular ejection fraction and 
a decrease in the New York Heart Association (NYHA) function-
al classification system.13 Patients with ischemic cardiomyopa-
thy receiving MNCs also demonstrated a significant reduction 
in natriuretic peptide levels.14 Notably, infusion of MNCs with 
higher colony-forming capacity was associated with lower mor-
tality, raising awareness of the notion that cell viability and qual-
ity have significant impacts on therapeutic effect. Mechanistic 

investigations have suggested that beneficial effects of MNC 
therapy were a result of neovascularization and paracrine effects 
rather than cardiomyocyte (CM) differentiation.15

Studies of bone marrow–derived mesenchymal stem cells 
(MSCs) revealed yet another adult stem cell source thought to 
be suitable for cardiac regeneration. MSCs were reported to 
readily express phenotypic characteristics of CMs and, when 
introduced into infarcted animal hearts by intravenous injec-
tions, localize at sites of myocardial injury, prevent tissue 
remodeling, and improve cardiac recovery.16,17 Intracoronary 
infusion of allogeneic mesenchymal precursors (Stro-3+ sub-
population) was also shown to decrease infarct size, improve 
systolic function, and increase neovascularization in animal 
myocardial infarction models.18 These observations led to a 
pilot human clinical study that confirmed the safety and tol-
erability of MSCs in humans, and subsequently to a phase I/
II randomized trial.19,20 More recently, additional evidence has 
questioned the ability of MSCs to transdifferentiate into CMs, 
instead attributing the mechanism of their therapeutic proper-
ties to paracrine effects, neovascularization, and activation of 
endogenous CSCs.19,21

Another class of multipotent adult stem cells of particular 
interest in cardiac cell therapy is cluster of differentiation-34 
positive (CD34+) angiogenic precursors. This interest stems 
from the relatively impaired angiogenesis seen in patients 
with ischemic heart disease as well as from findings that 
patients with coronary artery disease have reduced num-
ber and migratory activity of angiogenic precursors.22 It has 
also been observed that CD34+ cell injection ameliorates 
cardiac recovery in human patients with myocardial infarc-
tion by improving perfusion and by paracrine effects rather 
than CM differentiation.23 In one of the largest cell therapy 
trials to date, Losordo et al24 demonstrated that patients with 
refractory angina who received intramyocardial injections of 
CD34+ cells experienced significant improvements in angina 
frequency and exercise tolerance. In a subsequent publica-
tion, the group identified that CD34+ cells secrete exosomes 

Figure 1. Historic landmarks in the field of cardiac stem cell biology. Timeline of important discoveries contributing to the field of 
stem cell cardiac differentiation and characterization (purple and green boxes), including the key Top 100 Circulation Research articles 
discussed in this review (red boxes). CMs indicate cardiomyocytes; ESC, embryonic stem cell; and iPSC, induced pluripotent stem cell.
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that might account for some of the improved phenotypes.25 
The benefit of CD34+ cells was also shown for nonischemic 
cardiomyopathy, when intracoronary injections resulted in a 
small, but significant, improvement in ventricular function 
and survival.26 More importantly, this study demonstrated that 
higher intramyocardial homing was associated with better cell 
therapy response, providing support to previous observations 
regarding MNCs that cell delivery method and quality play 
significant roles in their therapeutic efficacy.

Finally, adipose-derived stem cells abundantly available from 
liposuction surgeries have been considered as potential sources 
of CMs. In 2004, Planat-Bénard et al27 reported potential deri-
vation of CMs from human adipose-derived stem cells by treat-
ment with transferrin, interleukin (IL)-3, IL-6, and vascular 
endothelial growth factor, although at a low event rate (Table). 
Ongoing trials are evaluating the efficacy of this cell population 
in regeneration of ischemic myocardium and, although com-
plete results have yet to be published, preliminary data are en-
couraging (trial identifier: NCT00426868).

Transdifferentiation of Committed Cells
Early attempts at inducing cardiac regeneration involved trans-
plant of skeletal myoblasts or fetal CMs to infarcted canine, rat, 
as well as human hearts. Unfortunately, these studies ultimately 
disappointed the field because myoblasts remained firmly com-
mitted to form mature skeletal muscle in the heart and led to 
induction of arrhythmias,28 whereas extensive cell death coupled 
with limited proliferation after transplant prevented fetal CMs 
from repairing injury.29 Transplantation of noncontractile com-
mitted cells such as fibroblasts and smooth muscle cells into 
infarcted rat hearts was then briefly thought to enhance heart 
function, possibly because of aforementioned paracrine ef-
fects.30 More recently, several studies have demonstrated in vi-
tro31 and in vivo32 transdifferentiation of mouse fibroblasts into 
seemingly functional CMs by overexpressing combinations of 
the cardiac transcription factors Gata4, Mef2c, Tbx5, Hand2, 
and Nkx2.5. Mouse CMs generated by direct transdifferentia-
tion are positive for CM-specific sarcomeric markers and ex-
hibit electrophysiological and gene expression profiles similar 
to those of fetal CMs, although this was disputed by other in-
vestigators.33 In vitro transdifferentiation toward CM-like cells 
was also reported for human fibroblasts, albeit by more time-
consuming and less efficient protocols that generated mostly 
partially reprogrammed CMs.34 Current efforts in this research 

area focus on optimizing transdifferentiation efficiency and CM 
maturation, further characterizing derived CMs, and validating 
that in vitro and in vivo transdifferentiation occur in the absence 
of experimental artifacts, which can include incomplete silenc-
ing of transgene expression from Cre-lox systems, cell fusion 
events, and the possibility of retrovirus transfecting not only 
dividing fibroblasts but also nondividing CMs in vivo. For this 
technology to be fully applied in the clinic, a greater understand-
ing of the following issues that have plagued the field must be 
reached: (1) the potential consequences of depleting endogenous 
cardiac fibroblasts to replenish CMs; (2) the ability to transfect 
bystander cells such as smooth muscle and endothelial cells with 
cardiac transcription factors; and (3) the challenge of triggering 
immune response against the host cells transfected with viral 
versus nonviral vectors.

Pluripotent Stem Cells
Embryonic Stem Cells
The isolation by Evans and Kaufman of mouse embryonic 
stem cells (mESCs) in 198135 and the generation of human 
embryonic stem cells (hESCs) by Thomson in 199836 allowed 
new opportunities for in vitro generation of CMs. Many pro-
tocols have been developed during the years to maximize 
the yield and efficiency of pluripotent ESC differentiation to 
CMs.37 One of the most used methods has been the formation 
of 3D aggregates named embryoid bodies, within which car-
diac differentiation occurs. In 2002, Xu et al38 were among the 
first to optimize cardiac differentiation protocols for hESCs 
by using DNA demethylating agent 5-azacytidine and enrich-
ment with Percoll separation gradients to obtain ≤70% pure 
CM populations (Table). Later, rigorous protocol standardiza-
tion and the use of key signaling factors such as bone morpho-
genetic protein 4 (BMP4) and Activin A enabled conversion of 
hESCs to CMs with >90% efficiency.39 Consequently, the for-
mation of 3D aggregates, a labor-intensive process, has now 
been largely replaced by differentiation in monolayer cultures, 
which are more amenable to scale-up and automation.40

Induced Pluripotent Stem Cells
The discovery of induced pluripotent stem cell (iPSC) technol-
ogy,41 based partly on principles highlighted by early somatic cell 
nuclear transfer experiments,42 has meant that mature somatic 
cells such as skin fibroblasts and peripheral blood mononucle-
ar cells can be reprogrammed with relative ease to acquire an 
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Figure 2. Uses of induced pluripotent stem cells (iPSCs). iPSCs are ideal cellular models for providing a renewable source of 
cardiomyocytes for in vitro disease modeling, pharmacological testing, and therapeutic applications in regenerative medicine.
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ESC-like phenotype. iPSCs retain the same capacity for high-
efficiency cardiac differentiation as ESCs, with the added advan-
tages of avoiding ethical debates related to use of human embryos 
and enabling autologous transplantation of CMs without the need 
for immunosuppression. These characteristics make iPSCs ideal 
cellular models to provide a renewable source of CMs for basic 
research, pharmacological testing, and cell therapy (Figure 2).43

Characterization of Pluripotent Stem Cell–Derived 
Cardiomyocytes
The use of pluripotent stem cell–derived cardiomyocytes 
 (PSC-CMs), which include both hESC-CMs and iPSC-CMs, 

for downstream applications requires that their properties be 
physiologically analogous to human CMs in vivo. Assays for 
CM characterization, such as assessment for cross striations, 
ultrastructure, and chronotropic drug response, were estab-
lished decades ago for primary rodent myocytes and published 
in a highly cited Circulation Research article by Simpson and 
Savion in 1982.44 In 1994, Maltsev et al45 were able to apply 
the same assays for extensive characterization of mESC-CMs. 
In addition, rigorous experimental optimization enabled them 
to identify internal and external solutions for patch-clamp elec-
trophysiological analysis to confirm that CM populations com-
prised ventricular, atrial, and nodal subtypes and exhibited most 

Table. Cell Sources for Cardiac Repair

Category Cell Type Advantages Disadvantages
Published Clinical 

Trials
Radiographic 
Improvement

Symptomatic 
Improvement

Unpublished/
Ongoing Clinical 

Trials

Adult stem cells ADSCs Relatively abundant
Accessible by 

minimally invasive 
procedures

Autologous cell 
population

Limited proliferation potential
Inefficient in vitro or in vivo 

cardiac differentiation
Modest improvements in cardiac 

function observed to date

None to date (ACELLDream)

CD34+ ACT34-CMI
NOGA-DCM

NA
+

+
+

NOGA-DCM, 
RENEW

PreSERVE-AMI

MSCs POSEIDON
C-CURE
TAC-HFT

+/−
+
+

+
+
+

PROMETHEUS
POSEIDON-DCM
NCT00644410

CHART-1, ixCELL-
DCM

MNCs FOCUS-HF,
FOCUS

Swiss-AMI
LateTIME,

TIME
TOPCARE-CHD

ASTAMI
BOOST

+/−
−
−
−
+
+
−
−

+
−
NA
−
NA
+

+/−
NA

CSCs Adequately expanded 
ex vivo 

Autologous cell 
population

Procured by relatively   
invasive procedures

SCIPIO + + SCIPIO

CDCs CADUCEUS + + ALLSTAR

Committed cells DFs
CFs

Potential for 
in vivo direct 

transdifferentiation in 
humans

Bypass need for stem 
cell progenitors

In vitro cardiac 
transdifferentiation extremely 
inefficient, mostly generating 

partially reprogrammed 
cardiomyocytes

None to date None to date

Pluripotent stem 
cells

ESCs Indefinite self-renewal
Efficient in vitro 

cardiac differentiation

Ethically problematic
Allogeneic transplant requires 

immunosuppression
Immature fetal-like  
differentiated cells

None to date (GERON, ACT)

iPSCs Additional potential for 
autologous transplant 

compared to ESCs

Immature fetal-like  
differentiated cells

None to date (RIKEN)

Advantages and disadvantages of the various cell sources used for cardiac regeneration studies, with examples of clinical trials in which cells were used for 
cardiac regeneration or, in parentheses, other conditions. ACELLDream indicates Adipose Cell Derived Regenerative Endothelial Angiogenic Medicine; ACT, advanced 
cell technology; ACT34-CMI, Autologous CD34-Chronic Myocardial Ischemia; ADSCs, adipose-derived stem cells; ALLSTAR, Allogeneic Heart Stem Cells to Achieve 
Myocardial Regeneration; AMI, acute myocardial infarction; ASTAMI, Autologous Stem Cell Transplantation in Acute Myocardial Infarction; CADUCEUS, Cardiosphere-
Derived Autologous Stem Cells to Reverse Ventricular Dysfunction; CDCs, cardiosphere-derived cells; CFs, cardiac fibroblasts; CHD, coronary heart disease; CSCs, cardiac 
stem cells; DFs, dermal fibroblasts; ESCs, embryonic stem cells; HF, heart failure; iPSCs, induced pluripotent stem cells; MNCs, mononuclear cells; MSCs, mesenchymal 
stem cells; NA, not available; NCT, number of clinical trial; NOGA-DCM, NOGA Mapping-Dilated Cardiomyopathy; POSEIDON, Percutaneous Stem Cell Injection Delivery 
Effects on Neomyogenesis; POSEIDON-DCM, Percutaneous Stem Cell Injection Delivery Effects On Neomyogenesis in Dilated Cardiomyopathy; PROMETHEUS, Prospective 
Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery; SCIPIO, Stem Cell Infusion in Patients With Ischemic Cardiomyopathy; 
Swiss-AMI, Swiss Multicenter Intracoronary Stem Cells Study in Acute Myocardial Infarction; and TAC-HFT, Transendocardial Autologous Cells in Ischemic Heart Failure.



Matsa et al  Cardiac Stem Cell Biology: Past, Present, Future  25

basic cardiac-specific ionic currents (L-type, ICa, INa, Ito, IK, 
IK1, IK, ATP, IK, Ach, and If). In 2003, He et al46 were among 
the first to perform similar characterizations of hESC-CMs.

Disease Modeling, Drug Screening, and Cell 
Therapy With PSC-CMs
In vitro–derived PSC-CMs have been assessed as potential 
screening platforms for drug discovery and toxicology stud-
ies. Despite their immature fetal phenotype, extensive phar-
macological validation confirms their potential use in drug 
evaluation.47 Clinically relevant drugs (eg, adrenergic receptor 
blockers, calcium channel blockers) have been shown to exert 
chronotropic and inotropic effects on PSC-CMs. In addition, 
experimental drugs have been used for in vitro amelioration of 
diseased phenotypes in human iPSC models of cardiovascular 
diseases48 and prediction of cytotoxic drug-induced  side ef-
fects.49,50 Accumulated evidence suggests that  PSC-CMs can 
offer the pharmaceutical industry a valuable physiologically 
relevant tool for validation of novel drug candidates and iden-
tification of potential cardiotoxic effects in early drug devel-
opment stages, thereby easing the huge associated economic 
and patient care burdens.51,52

The most successful and widely acknowledged use of 
 PSCs-CMs has, to date, been in disease modeling. The de-
velopment of disease models by genome editing of mESCs, 
a technology that led to award of the Nobel Prize in 2007 
for Sir Martin Evans, Mario Capecchi, and Oliver Smithies 
(Figure 1), has offered new tools for in vivo mechanistic inves-
tigation into cardiac illnesses. The discovery of induced plu-
ripotency technologies, which likewise led to the Nobel Prize 
in 2012 for Sir John Gurdon and Shinya Yamanaka, allowed 
the generation of patient-specific iPSC-CMs for studying hu-
man disease models of familial hypertrophic cardiomyopa-
thy,53 familial dilated cardiomyopathy,54 long QT syndrome,55 
Timothy syndrome,56 arrhythmogenic right ventricular dys-
plasia,57 and others47 (Figure 2). Beyond the potential ability 
of these models to reveal insights into pathological disease 
mechanisms, they also offer unique opportunities to explore 
promising new genetic therapies58 and to identify loci or path-
ways related to predisposition toward cardiac disorders, thus 
enabling refinement of phenotype-to-genotype correlations to 
improve risk stratification and disease management.

The use of PSC-CMs has also expanded to in vivo applica-
tions, with transplantation shown to improve cardiac function 
in rat and guinea pig models of acute myocardial infarction.59,60 
Effective strategies to deplete potential tumorigenic cells,61,62 
induce immunotolerance,63,64 and enhance cell survival65 are 
being sought. Novel tissue engineering approaches to cre-
ate engineered heart tissues for aiding cell delivery, survival, 
alignment, and functionality of transplanted PSC-CMs are be-
ing developed in parallel.66 Notably, these technologies were 
pioneered by Thomas Eschenhagen’s group, who published 
one of the first engineered heart muscle articles in Circulation 
Research in 2002.67

Conclusions
Extensive progress has been made in the field of cardiac stem 
cell biology to promote heart tissue repair by introduction of 
exogenous stem cells, such as MSCs, MNCs, adipose-derived 

stem cells, CD34+ cells, c-kit+ CSCs, and cardiosphere-de-
rived cells, as evidenced by recent early phase clinical trials 
shown to reduce infarct size in patients (Table). New clinical 
trials are underway to validate the efficacy of these thera-
pies. Investigation into identifying ideal patient populations, 
cell delivery timing,68 cell delivery route,69 and efficacy end 
points70 will certainly be needed to optimize their full poten-
tial. At the same time, hESCs and iPSCs are progressively 
being used to reliably generate de novo CMs. A major hur-
dle, however, is their closer resemblance to fetal rather than 
adult CMs.71 Combination of increasingly efficient CM gen-
eration protocols40 and next-generation sequencing technolo-
gy,72 as well as other high-throughput screening assays, such 
as single-cell PCR,73 can lead to identification of molecular 
markers to further enhance CM maturation. Taken together, 
these advances in adult and PSC biology during the past de-
cades may herald a new area of cardiovascular regenerative 
and personalized medicine in upcoming years.
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