Letter by Wang Regarding Article, “Renal Denervation for the Treatment of Cardiovascular High Risk-Hypertension or Beyond?”

To the Editor:

In their article titled “Renal denervation for the treatment of cardiovascular high risk-hypertension or beyond?” Böhm et al.1 presented an excellent overview on renal denervation and its clinical indications. The authors emphasized the blood pressure-lowering effect of renal denervation. However, they did not cite a number of studies in which renal denervation did not lower office blood pressure2 or 24-hour ambulatory blood pressure.3–6 These uncited articles2–6 and the recently published Symplicity HTN-3 trial7 clearly indicate that renal denervation does not lower blood pressure in every patient. The long-term safety of renal denervation has not been well established. Therefore, I agree with the authors’ opinion that renal denervation should only be performed in patients with resistant hypertension as ultima ratio, which was first suggested by Persu et al in 2012. However, Böhm et al. also suggested further investigating whether pseudoresistant hypertension is also a target for renal denervation. This suggestion seems not appropriate, because (1) this suggestion is against the consensus that renal denervation should be only used as ultima ratio and (2) a recent study has shown that pseudohypertension is not a risk factor if the patients are pharmaceutically treated. Therefore, applying renal denervation to patients with pseudoresistant hypertension is not well justified.

Another point overlooked by the authors is that blood pressure in a large number of patients with resistant hypertension could be controlled by adjusting antihypertensive drugs. A recent study,11 in which 19 patients with resistant hypertension were randomized to adjusted drug treatment (n=10) and renal denervation (n=9), showed that adjusted drug treatment significantly decreased ambulatory blood pressure from 152/88 mm Hg at baseline to 133/77 mm Hg at 6 months. Renal denervation decreased ambulatory blood pressure from 152/93 mm Hg at baseline to 142/86 mm Hg at 6 months, being inferior to adjusted drug treatment. In addition, ambulatory systolic blood pressure was decreased below 135 mm Hg in 7 of the 10 patients by adjusting antihypertensive drugs.11 This study, for the first time, demonstrated that a large number of patients who are currently thought to have true resistant hypertension could be effectively treated by adjusting drugs. Therefore, adjusted drug treatment is highly recommended before renal denervation.

In summary, renal denervation should be offered to patients with resistant hypertension as ultima ratio. Therefore, applying renal denervation to patients with pseudoresistant hypertension is not well justified, and adjusted drug treatment is highly recommended before renal denervation.

Sources of Funding
This work was funded by a grant from the National Health and Medical Research Council (1062671).

Disclosures
None.

Yutang Wang
School of Health Sciences
Federation University Australia
Mount Helen, Victoria, Australia

References
Letter by Wang Regarding Article, "Renal Denervation for the Treatment of Cardiovascular High Risk-Hypertension or Beyond?"
Yutang Wang

Circ Res. 2014;115:e18
doi: 10.1161/CIRCRESAHA.114.304917

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/115/7/e18

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org/subscriptions/