Angiotensin II Type 2 Receptor Effects: Lesson From a Human Model of Vascular Hyporeactivity. Letter Regarding Kemp et al

Angiotensin II (Ang II) regulates a broad spectrum of cardiovascular and renal processes ranging from vasoconstriction to inflammatory processes, including atherosclerosis and vascular ageing. Ang II determines most of its effects via activation of 2 G-protein–coupled receptors with opposite effects: the type 1 (AT₁R) and the type 2 receptors (AT₂R).

The relationships and interactions between AT₁R and AT₂R signals, their roles in the control of vascular tone and cardiovascular remodeling, and the underlying mechanisms are complex and remain to be defined fully.

Kemp et al. have added another relevant piece of evidence in this field through an elegant study in an animal model of AT₂R stimulation recently published in the journal. These authors have, in fact, demonstrated that AT₂R stimulation via the specific nonpeptide AT₂R agonist compound-21 (C-21) increased the urinary sodium excretion without affecting the mean arterial blood pressure and the renal hemodynamics. This effect has been shown to be dependent on a bradykinin-nitric oxide-cyclic guanosine monophosphate pathway. Finally, the authors demonstrated that in a rat model of Ang II–dependent hypertension, the intrarenal RhoA/Rho-kinase system, and by the upregulation of the regulator of G protein signaling-2 and of the nitric oxide system.

Ang II levels on MKP-1 expression and ERK1/2 phosphorylation response in BS/GS fibroblasts to the same level as the prolonged ERK1/2 phosphorylation increase found in the fibroblasts from healthy subjects. Moreover, in fibroblasts from healthy subjects incubated with the AT₁R inhibitor losartan, Ang II determined an ERK1/2 phosphorylation and MKP-1 response curve comparable with that of BS/GS. Taken together, these data confirm patients with BS/GS as a human model of blunted AT₁R signaling and prove the activation of AT₂R signaling in the presence of high Ang II levels. In addition, the Ang II effects in patients with BS/GS may provide further insight into the AT₁R and AT₂R interactions because they suggest that AT₂R-activated MKP-1 affects ERK1/2 phosphorylation, which is strongly linked to the AT₁R stimulated cardiovascular hypertrophic response.

Moreover, the in vitro demonstration that the effects of high Ang II levels on MKP-1 expression and ERK1/2 phosphorylation are blunted by the AT₁R inhibitor PD123319 in fibroblasts of patients with BS/GS and by the AT₁R inhibitor losartan plus PD123319 in healthy subjects’ fibroblasts, together with the clinical evidence in patients with BS/GS of reduced vascular tone and normotension/hypotension, despite the activation of the renin–angiotensin–aldosterone system, corroborate in a human model the findings by Kemp et al. in an animal model and strongly support with data in a human model characterized by the activation of antihypertensive, antiatherosclerotic, and antiremodeling defenses, the evidence and conclusions of Kemp et al. on the stimulation of AT₂R signaling provided in animals.

None.

Disclosures

Giuseppe Maiolino
Department of Medicine
Clinica Medica 4
University of Padova
Padova, Italy

Elena Naso
Lorenzo A. Calò
Department of Medicine, Nephrology
University of Padova
Padova, Italy
References
Angiotensin II Type 2 Receptor Effects: Lesson From a Human Model of Vascular Hyporeactivity. Letter Regarding Kemp et al
Giuseppe Maiolino, Elena Naso and Lorenzo A. Calò

Circ Res. 2014;115:e24-e25
doi: 10.1161/CIRCRESAHA.114.304959

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/115/9/e24