Angiotensin II Type 2 Receptor Effects: Lesson From a Human Model of Vascular Hyporeactivity. Letter Regarding Kemp et al

Angiotensin II (Ang II) regulates a broad spectrum of cardiovascular and renal processes ranging from vasoconstriction to inflammatory processes, including atherosclerosis and vascular ageing. Ang II determines most of its effects via activation of 2 G-protein–coupled receptors with opposite effects: the type 1 (AT1R) and the type 2 receptors (AT2R).

The relationships and interactions between AT1R and AT2R signals, their roles in the control of vascular tone and cardiovascular remodeling, and the underlying mechanisms are complex and remain to be defined fully.

Kemp et al have added another relevant piece of evidence in this field through an elegant study in an animal model of AT2R stimulation recently published in the journal. These authors have, in fact, demonstrated that AT2R stimulation via the specific nonpeptide AT2R agonist compound-21 (C-21) increased the urinary sodium excretion without affecting the mean arterial blood pressure and the renal hemodynamics. This effect has been shown to be dependent on a bradykinin-nitric oxide-cyclic guanosine monophosphate pathway. Finally, the authors demonstrated that in a rat model of Ang II–dependent hypertension, the intrarenal RhoA/Rho-kinase system, and by the upregulation of the regulator of G protein signaling-2 and of the nitric oxide system.

The relationships and interactions between AT1R and AT2R signals, their roles in the control of vascular tone and cardiovascular remodeling, and the underlying mechanisms are complex and remain to be defined fully. Kemp et al have added another relevant piece of evidence in this field through an elegant study in an animal model of AT2R stimulation recently published in the journal. These authors have, in fact, demonstrated that AT2R stimulation via the specific nonpeptide AT2R agonist compound-21 (C-21) increased the urinary sodium excretion without affecting the mean arterial blood pressure and the renal hemodynamics. This effect has been shown to be dependent on a bradykinin-nitric oxide-cyclic guanosine monophosphate pathway. Finally, the authors demonstrated that in a rat model of Ang II–dependent hypertension, the intrarenal RhoA/Rho-kinase system, and by the upregulation of the regulator of G protein signaling-2 and of the nitric oxide system.

Moreover, the in vitro demonstration that the effects of high Ang II levels on MKP-1 expression and ERK1/2 phosphorylation are blunted by the AT1R inhibitor PD123319 in fibroblasts of patients with BS/GS and by the AT1R inhibitor losartan plus PD123319 in healthy subjects’ fibroblasts, together with the clinical evidence in patients with BS/GS of reduced vascular tone and normotension/hypotension, despite the activation of the renin–angiotensin–aldosterone system, corroborate in a human model the findings by Kemp et al in an animal model and strongly support with data in a human model characterized by the activation of antihypertensive, antiatherosclerotic, and antiremodeling defenses, the evidence and conclusions of Kemp et al on the stimulation of AT2R signaling provided in animals.

Disclosures

None.

Giuseppe Maiolino
Department of Medicine
Clinica Medica 4
University of Padova
Padova, Italy

Elena Naso
Lorenzo A. Calò
Department of Medicine, Nephrology
University of Padova
Padova, Italy

(Circ Res. 2014;115:e24-e25.)
© 2014 American Heart Association, Inc.
Circulation Research is available at http://circres.ahajournals.org

DOI: 10.1161/CIRCRESAHA.114.304959
References
Angiotensin II Type 2 Receptor Effects: Lesson From a Human Model of Vascular Hyporeactivity. Letter Regarding Kemp et al
Giuseppe Maiolino, Elena Naso and Lorenzo A. Calò

Circ Res. 2014;115:e24-e25
doi: 10.1161/CIRCRESAHA.114.304959

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/115/9/e24

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/