Emerging evidence continues to support the functional importance of extracellular matrix (ECM) proteins in cellular signaling. In mineralizing tissues, including bone, cartilage, and vasculature, ECM proteins not only provide the microenvironment for propagation of crystal growth but also support and transmit mechanical cues to the cells, and these cues govern many aspects of cell function, including proliferation and differentiation. When cells interact with the matrix and produce their own matrix proteins, it is a form of intercellular communication. Although this “matricrine” signaling receives less research attention than chemical forms of intercellular communication, such as autocrine and paracrine signaling, it is important in biomineralization in both health and disease.

Article, see p 261

In this issue of Circulation Research, Fu et al highlight the important role of the noncollagenous ECM protein, cartilage oligomeric matrix protein (COMP) in calcific atherosclerosis. COMP, a member of the thrombospondin-5 family of proteins, maintains cartilage structural integrity by binding collagen and other ECM proteins, such as aggrecan (chondroitin sulfate proteoglycan I), aggregates of which give cartilage its springy resistance to compression. COMP overexpression enhances ECM organization and assembly by increasing total soluble glycosaminoglycan content and levels of aggrecan and collagen type II. Thus, COMP seems to control the assembly and maintenance of the tertiary architecture of ECM. Its homopentameric structure, like that of a spiny starfish, allows it to bind to multiple sites, bridging collagen fibrils to one another and bridging cells to matrix proteins and proteoglycans.

ECM proteins interact with the intracellular cytoskeleton through mechanical links with integrins. As described elegantly by Ingber et al, as a tensile model, the mechanical features of ECM are central determinants of cell shape and, thus, cell behavior. One robust example of the ability of ECM mechanical characteristics to control cell behavior consists of lineage determination. For instance, Yip et al showed that valvular cells undergo osteochondrogenic differentiation when grown on an ECM with a particular range of elastic modulus (25–30 kPa), whereas on a less compliant matrix (110 kPa), valvular cells undergo myofibroblastic differentiation. Similarly, the Anseth group showed that growth on a substrate with lower elastic modulus directs valvular myofibroblasts into a more dormant fibroblastic phenotype.

One possible mechanism, by which matrix stiffness may control cell differentiation is through release of morphogens from sites on binding proteins that bridge cellular integrins with ECM proteins, as proposed by Hinz. In this paradigm (Figure 1), transforming growth factor-β superfamily members, which include molecular morphogens, are held in, what we term, “spring-loaded” sites in latent binding proteins that are strategically located between integrins and anchored ECM proteins. Even a brief contraction of the cytoskeleton may allow a cell to “sense” local ECM properties by tugging on the chain of proteins (integrins/binding proteins/ECM proteins). If the cell tugs on a stiff ECM, the resistance produces tension that can unfold a binding protein “spring” to release the morphogens, which may then activate receptors on the cell surface. However, if the cell tugs on a compliant ECM, the matrix may simply “give,” offering no resistance, generating no tension to open the binding protein, and failing to release the morphogen. This concept of a “spring-loaded morphogen” is attractive because it may account for the many known effects of matrix elasticity on cellular differentiation.

Canfield et al first described the presence of COMP in calcific atherosclerosis in 1998. They demonstrated that COMP is present in the fibrous tissue and in areas of microscopic calcium deposits in atherosclerotic lesions. More recently, Du et al showed that COMP deficiency markedly exacerbates—and its ectopic expression greatly reduces—vascular calcification. These findings suggest that COMP has a compensatory, negative feedback role. In vascular cells, COMP also interacts with integrins, a key participant in matricrine signaling. One may speculate, based on the function of COMP in cartilage tissue, that it acts as a tertiary mechanical bridge in ECM, providing greater strength and greater resistance to stretch. If so, then a substrate deficient in COMP may be more compliant (a lower elastic modulus), which is associated with osteochondrogenic differentiation. Conversely, it is conceivable that, if COMP were overexpressed in valvular cells, valve stiffness would increase and direct the cells to a myofibroblastic lineage, which may lead to scar-like contracture and retraction, as seen in human aortic stenosis.

Recent evidence raises the possibility that COMP may be involved in a spring-loaded morphogen mechanism, given its
binding to integrins, its binding to the morphogen, bone morphogenetic protein-2, and its involvement in presenting such factors to cell surface receptors. Similar to the findings by Fu et al1 in this issue of Circulation Research, Di Cesare et al6 showed that COMP interacts with cells via the integrin receptor, α5 β1. Interestingly, given that Du et al 14 showed that COMP binds to BMP-2 (bone morphogenetic protein-2), an alternative mechanical phenomenon may take place (Figure 2). In this alternative model, mechanical tension may alter the ability of COMP to present BMP-2 to its cell surface receptor. When a cell contracts on a more flexible (compliant) substrate, COMP may be free to present BMP-2 to the cell. In contrast, on a rigid substrate, COMP may be held back or stretched into an elongated configuration that does not allow ligand presentation. This conjecture is supported by the finding that COMP overexpression alters sensitivity of C3H10T1/2 mesenchymal cells to BMP-2.16 Fu et al1 also provide strong support for earlier findings, highlighting the role of inflammation in atherosclerotic calcification. The authors demonstrate that bone marrow–derived inflammatory cells are increased in the circulation of COMP-deficient hyperlipidemic mice. Inflammation, which has long been associated epidemiologically with increased risk of cardiovascular mortality,17,18 precedes vascular smooth muscle cells and bone marrow–derived cells contribute to biominerlization in atherosclerotic lesions.21 Direct effects of activated monocyte/macrophages on vascular cell calcification were first described in 2000 through the potent pro-osteochondrogenic cytokine, tumor necrosis factor-α.22,23 In hyperlipidemic mice, tumor necrosis factor-α is expressed locally in valvular leaflets, where calcified nodules occur.24 In definitive studies tying these concepts together, the Towler laboratory showed that tumor necrosis factor-α neutralizing antibodies (infliximab) reduced aortic calcium accumulation and osteochondrogenic differentiation of aortic myofibroblastic cells in a mouse model of calcific atherosclerosis.25

Inflammation is also associated with cellular mechanisms of cardiovascular disease. Fu et al1 highlight the important contributions and additive effects of mesenchymal and hematopoietic lineage cells in calcific vasculopathy.1 Their findings are in agreement with previous lineage tracing studies showing that both vascular smooth muscle cells and bone marrow–derived cells contribute to biominerlization in atherosclerotic lesions.21 Direct effects of activated monocyte/macrophages on vascular cell calcification were first described in 2000 through the potent pro-osteochondrogenic cytokine, tumor necrosis factor-α.22,23 In hyperlipidemic mice, tumor necrosis factor-α is expressed locally in valvular leaflets, where calcified nodules occur.24 In definitive studies tying these concepts together, the Towler laboratory showed that tumor necrosis factor-α neutralizing antibodies (infliximab) reduced aortic calcium accumulation and osteochondrogenic differentiation of aortic myofibroblastic cells in a mouse model of calcific atherosclerosis.25

In the past, autocrine and paracrine molecular signaling mechanisms have been considered the primary means by remodeling, promoting degradation by metalloproteinase induction and promoting new matrix by increasing expression and synthesis of certain ECM proteins. Li et al20 showed that production of metalloproteinases by activated macrophages may increase plaque vulnerability by destabilizing calcified nodules.

Inflammation is also associated with cellular mechanisms of cardiovascular disease. Fu et al1 highlight the important contributions and additive effects of mesenchymal and hematopoietic lineage cells in calcific vasculopathy.1 Their findings are in agreement with previous lineage tracing studies showing that both vascular smooth muscle cells and bone marrow–derived cells contribute to biominerlization in atherosclerotic lesions.21 Direct effects of activated monocyte/macrophages on vascular cell calcification were first described in 2000 through the potent pro-osteochondrogenic cytokine, tumor necrosis factor-α.22,23 In hyperlipidemic mice, tumor necrosis factor-α is expressed locally in valvular leaflets, where calcified nodules occur.24 In definitive studies tying these concepts together, the Towler laboratory showed that tumor necrosis factor-α neutralizing antibodies (infliximab) reduced aortic calcium accumulation and osteochondrogenic differentiation of aortic myofibroblastic cells in a mouse model of calcific atherosclerosis.25
which cells share information in inflammation. The findings by Fu et al support the importance of matricrine signaling, a less appreciated mechanism of intercellular communication, but an important additional layer of control for cellular behavior and differentiation.

Sources of Funding
This work was supported by grants HL114709 and HL121019 from the Heart, Lung, and Blood Institute (NHLBI) of the National Institutes of Health.

Disclosures
None.

References

Key Words: Editorials ■ atherosclerosis ■ extracellular matrix ■ inflammation ■ vascular calcification
COMP-lex Mechanics: Matricrine Signaling
Yin Tintut and Linda L. Demer

_Circ Res._ 2016;119:184-186
doi: 10.1161/CIRCRESAHA.116.309121

_Circulation Research_ is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/119/2/184

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation Research_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation Research_ is online at:
http://circres.ahajournals.org/subscriptions/