For precision medicine to become a reality, we propose 3 changes. First, healthcare deliverables must be prioritized, enabling translation of knowledge to the clinic. Second, physicians and patients must be convinced to participate, requiring additional infrastructure in health systems. Third, discovery science must evolve to shift the preclinical landscape for innovation. We propose a change in the fundamental relationship between basic and clinical science: rather than 2 distinct entities between which concepts must be translated, we envision a natural hybrid of these approaches, wherein discovery science and clinical trials coincide in the same health systems and patient populations.

Even the generally progressive physician can be unsure and perhaps even skeptical about how precision medicine will fit into daily practice. In our view, precision medicine is personalized clinical care informed (primarily) by measurements of the genome, epigenome, proteome, transcriptome, metabolome, and microbiome. Precision medicine should result in a more healthy life with less disease burden, and it should be delivered on an individualized basis.

Many therapies fail when they are tested in large animal models or when transitioning from phase I to phase II clinical trials, leading to a decrease in the number of new drugs making it to market. Despite improvements based on guideline adherence, cardiovascular disease remains the leading killer and a tremendous financial burden on the nation.

Implementation of precision medicine will require collaboration across the spectrum of research and healthcare delivery, including funding agencies, insurers, academic medical centers, private hospitals and consumer 'omics providers, and electronic medical records are a way to start: genetic data, based first on genetic factors, then building out new modules based on other validated 'omics markers—would be a practical solution providing outstanding fit for nearly everyone. In contrast, 320 million shoe sizes—1 for every American (the type of precision medicine we do not want to pursue), may in theory fit each individual perfectly but in practice would be unworkable. Rather, 10 to 12 shoe sizes—or the type of precision medicine we do want, based first on genetic factors, then building out new modules based on other validated 'omics markers—would be a practical solution providing outstanding fit for nearly everyone.

The goal is to make actionable the distinct features in 'omics data sets with high correlation with disease. Expanded electronic medical records are a way to start: genetic data, when available, should be populated into the medical record to aid clinical decision making, and predictive models that can assign risk should be developed from 'omics measurements. By starting with variants that we already know modify risk
and implementing them at the point of care for all patients, the common practice can be changed, facilitating adoption of future ‘omics metrics. This knowledge should also be applied in the clinical trial setting, engineering enrollment based on genotypes likely to respond to a therapy.\(^7\)

Building Comprehensive Data Sets

With current technology and sufficient economy of scale, universal genome sequencing could be implemented today if academic medical centers willed it to be. Insurers need to be convinced about the advantages to genome sequencing at birth—the foundation for precision, longitudinal care across a lifetime, which will reduce healthcare cost in the long term through improved understanding of disease and health. We may not know how to use this information today, but we must have the foresight to accumulate the ‘omics data on our patients while they are still healthy and so that when we do learn the diagnostic value, we have the wherewithal to adapt care. More patients means greater resolution in genetic—and eventually, other ‘omic—architecture of cardiovascular disease, which will in turn result in more accurate prediction, tailored treatments, less waste, and better outcomes.

Value may come from knowledge bases of data,\(^4\) for example, the building of ‘omics-based models from diverse populations. We must build a framework for electronic medical record logic that can integrate risk algorithms and network-based predictors in an actionable manner to aid the physician’s decision making.

Provider and Patient Engagement

For the patient living with a debilitating disease, or the family member who suffers by his side, the greater good can ring hollow as motivation to participate in research. Likewise for healthcare professionals: are not their days already trammeled enough with regulations and responsibilities?

A successful precision medicine framework must make enrollment simple. Study coordinators must work across departments, breaking down traditional barriers between specialties. Every patient admitted to the clinic should be approached for participation in clinical studies—universally consented,

Figure. Integrating diagnosis with discovery and evolving new care models.

A. By engaging the patient population as a partner in precision medicine, lifelong health monitoring will facilitate not only improved diagnosis but also a sustained source of human samples for discovery research. This infrastructure also serves as an asset for the health system, because of the increasing burden of cardiovascular disease and the diversification of the American population. **B.** Once disease manifests, medical treatment often proceeds without heed to factors that may indicate the effectiveness of one therapy over another. In a precision medicine environment, different scales of biological information are measured and become actionable, aiding in the clinician’s management of the patient. Medicine will remain the science of treating the individual—the molecular insights from a diverse population will better tailor the treatment process, promoting health.
not only for clinical studies related to population medicine but also for the measurement of molecular signatures (eg, from saliva or blood) throughout life.

Make It Free (or Almost Free)

An ECG is performed on nearly every cardiac patient because it has a balance between cost, risk, and number-to-treat considerations: cost is low and risk is nil, while the number of people to whom it must be applied to be helpful in a diagnosis is also low. A combination of reduced cost because of economies of scale, improved provider education on when to order genetic testing and improved infrastructure to integrate new findings into health system databases will enable ‘omics-based measurements to take on a similar place in the diagnostic workflow. Take for example troponin assays, which are now universally ordered in chest pain cases and covered by insurance; this paradigm arose from physicians knowing how to use the test results and insurers appreciating the actuarial wisdom of covering them. A near-term solution for this challenge is to encourage insurance companies to pay for ‘omics measurements as part of a test panel, some of the components of which provide immediately actionable results, whereas others serve research purposes. Finally, the proliferation of consumer health monitoring devices enables fine tracking of cardiovascular symptoms (eg, arrhythmias) and presents an opportunity to engage patients in promotion of their own health.

Provide a Tangible Benefit Now—Not Just in the Future

Genetic testing for families with inherited cardiomyopathies is a logical place to start to establish a culture of molecular diagnosis in the clinic. The benefits to patients are immediate: knowing which family members carry various mutations (along with compounded risk) helps with piece of mind and practical guidance for changing lifestyle, healthcare decisions, and family planning. The best way to motivate a patient and her family to engage in advanced testing is to make it easy and to show the benefit not only to the patient but also to her loved ones. Cardiologists should have the training to judge when genetic and other ‘omic testing is warranted and be able to page an on call study coordinator to collect the sample and genetic counselor to educate the patient.

A cardiovascular clinician-scientist should be empowered as a health system-wide leader; pioneering new research areas and clinical measurements, directing enrollment, designing patient management protocols for cases in which molecular phenotyping has been performed, and staying current on developments from other medical centers.

Patients need to know that the information they provide will not end up in the wrong hands. Notwithstanding valid concerns about cyber security breaches and reidentification of individuals from genetic information, much of the current concerns about information security will, we predict, reside with time. Protocols must establish what types of information is passed back to the patient, ensuring that access to molecular information is accompanied by education. If the clinician initiates this conversation, the patient in turn will become more willing to participate in meaningful research and ‘omics-based health and wellness monitoring, returning benefits throughout life.

Evolving the Discovery Science Pipeline

The salutary relationship between research and practice means that for precision medicine to usher in a meaningful transformation in clinical care, discovery science too must evolve.

Human Models of Human Disease

Despite the value of mouse studies for superb mapping of cellular signaling pathways, more effort needs to be put into studying confounding variables including age, sex, and common genetic variation. There is another conceptual paradox between the approach to discovery research in animals and the treatment of patients in the clinic: modern research interrogates multiple scales of biological complexity, from molecule to network, to organelle, to cell, to organism. This progression almost never happens in clinical medicine, wherein patient presentation is complemented usually only by molecular measurements, bypassing the other scales of complexity that fundamental research has taught us are critical for normal and diseased physiology. A precision medicine framework that utilizes our current understanding of biological scales could transform care (Figure). Achieving this goal will require that more discovery research be performed directly in human populations and in patient-derived cells, including induced pluripotent stem cells, which can obviate concerns of species specificity and genetic variability earlier in the pipeline from discovery to clinical implementation.

The big data resultant from ‘omics studies necessitates that medical centers develop infrastructure for acquiring, housing, mining, and protecting patient information on an unprecedented scale. How well institutions extract biological principles from this wealth of information, and the effectiveness with which they make actionable clinical features from the data (revealing phenotypes that are currently masked) will determine the success of precision medicine. Big data science and computing also opens the door to virtual clinical trials based not on single targets, but on sophisticated models that incorporate population-level variability. Part of the goal of refined clinical trials goes backward from validating new drugs to salvaging old ones that may have failed larger randomized clinical trials because of dangerous side effects in an identifiable cohort.

It Is Not All Genetics

Most molecular diagnostics currently used in clinical cardiology are not genetic end points, highlighting that other molecular features harbor prognostic and diagnostic value. Multi-’omics measurements in a single individual have already been shown to reveal not only new biology but also clinically actionable disease insights. We are particularly bullish on the clinical value of the epigenome, which integrates the genome, the proteome, in some cases metabolome, and certainly the environment: an objective diagnostic…if we can figure out how to decode it.

Precision medicine is not limited to molecular measurements. Advances in imaging can reveal new physiology, and technological innovation is constantly pushing the boundaries of manmade (and cellular) products. The new strategies for molecular phenotyping described in this article can only
impact patient care if they are implemented as part of an evolving continuum of clinical care ranging from patient assessment to surgical intervention. Is there a role for symbiotic molecular, imaging, and surgical/transcatheter interventions in the care of patients in the uterus, in infancy, or even adulthood? Can we develop procedures with predictable anatomic consequences that could be modeled using advanced imaging and 3-dimensional printing techniques tailored to the individual? A better understanding of the relative contributions of anatomic, physiological, and molecular variables will be key to the successful integration of precision medicine into clinical care.

Concluding Remarks

The provider has the patient before her on a daily basis…the patient and family are burdened with disease…and yet the promise of a cure is always on the horizon. Our purpose for writing this article was to contribute to the discussion on how we as a scientific and medical community can operationalize the vast knowledge from ‘omics technologies. We propose strategies for (1) precision healthcare delivery redesign, (2) maximizing provider and patient engagement, and (3) evolving the discovery research paradigm. The time is now to revitalize the effort to transform research and clinical medicine to provide superior care for the individual.

Sources of Funding

Research by the authors was supported by the National Institutes of Health, the American Heart Association, the Cardiovascular Research Initiative at University of California, Los Angeles (UCLA) and the David Geffen School of Medicine at UCLA.

Disclosures

None.

References

Key Words: genomics ■ precision medicine ■ proteomics ■ systems biology
Operationalizing Precision Cardiovascular Medicine: Three Innovations
Jessica J. Wang, Jamil A. Aboulhosn, Ira S. Hofer, Aman Mahajan, Yibin Wang and Thomas M. Vondriska

Circ Res. 2016;119:984-987
doi: 10.1161/CIRCRESAHA.116.309776
Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://circres.ahajournals.org/content/119/9/984
Free via Open Access

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/