Coupling of β2-Adrenoceptor to G i Proteins and Its Physiological Relevance in Murine Cardiac Myocytes

Rui-Ping Xiao, Pavel Avdonin, Ying-Ying Zhou, Heping Cheng, Shahab A. Akhter, Thomas Eschenhagen, Robert J. Lefkowitz, Walter J. Koch, Edward G. Lakatta

Abstract—Transgenic mouse models have been developed to manipulate β-adrenergic receptor (βAR) signal transduction. Although several of these models have altered βAR subtypes, the specific functional sequelae of βAR stimulation in murine heart, particularly those of β2-adrenergic receptor (β2AR) stimulation, have not been characterized. In the present study, we investigated effects of β2AR stimulation on contraction, [Ca2+]i, transient, and L-type Ca2+ currents (I Ca) in single ventricular myocytes isolated from transgenic mice overexpressing human β2AR (TG4 mice) and wild-type (WT) littermates. Baseline contractility of TG4 heart cells was increased by 3-fold relative to WT controls as a result of the presence of spontaneous β2AR activation. In contrast, β2AR stimulation by zinterol or isoproterenol plus a selective β1-adrenergic receptor (β1AR) antagonist CGP 20712A failed to enhance the contractility in TG4 myocytes, and more surprisingly, β2AR stimulation was also ineffective in increasing contractility in WT myocytes. Pertussis toxin (PTX) treatment fully rescued the I Ca, [Ca2+]i, and contractile responses to β2AR agonists in both WT and TG4 cells. The PTX-rescued murine cardiac β2AR response is mediated by cAMP-dependent mechanisms, because it was totally blocked by the inhibitory cAMP analog Rp-cAMPS. These results suggest that PTX-sensitive G proteins are responsible for the unresponsiveness of mouse heart to agonist-induced β2AR stimulation. This was further corroborated by an increased incorporation of the photoreactive GTP analog [γ-32P]GTP azidoanilide into α subunits of G i and G s after β2AR stimulation by zinterol or isoproterenol plus the β1AR blocker CGP 20712A. This effect to activate Gi proteins was abolished by a selective β1AR blocker ICI 118,551 or by PTX treatment. Thus, we conclude that (1) β2ARs in murine cardiac myocytes couple to concurrent Gi and G i signaling, resulting in null inotropic response, unless the Gi signaling is inhibited; (2) as a special case, the lack of cardiac contractile response to β1AR agonists in TG4 mice is not due to a saturation of cell contractility or of the cAMP signaling cascade but rather to an activation of β2AR-coupled Gi proteins; and (3) spontaneous β2AR activation may differ from agonist-stimulated β2AR signaling. (Circ Res. 1999;84:43-52.)

Key Words: β2-adrenergic receptor ■ inhibitory G protein ■ cardiac contractility ■ L-type Ca2+ current ■ mice, transgenic

Current opinion suggests that gene therapy may hold great promise for treatment of cardiovascular diseases that lead to chronic heart failure. The assimilation of rapid advances in mouse genetics into the realm of cardiovascular research has provided pharmacologists and physiologists a tremendous range of new opportunities to unravel the molecular secrets that govern cardiovascular structure and function in health and disease. Several lines of transgenic mice have been generated to target key proteins that govern transmembrane signal transduction or modulate the contractile properties of myocardial cell.1–9 One such model that has drawn substantial attention is a transgenic mouse model overexpressing the human β2-adrenergic receptor (β2AR) in a cardiac specific manner (TG4). In this model, while baseline myocardial contractility is successfully enhanced relative to wild-type (WT) littermates,1 cardiac responsiveness to an acute administration of the β-adrenergic receptor (βAR) agonist isoproterenol (ISO) is totally lacking both in vivo and in isolated atria.1,7 These observations have led to a conclusion that β2-adrenergic modulation in the TG4 mouse heart is saturated in the basal state because of a greater number of β2ARs in the spontaneous active state (R* state) in the absence of agonists.1,7

Because recent studies in other mammalian species have shown that physiological responses and signal transduction mechanisms of β2AR subtype stimulation are distinctly dif-
β₂-Adrenoceptor Couples to G_s and G_i Proteins

Different from those of β₁-adrenergic receptor (β₁AR) stimulation, it is essential to characterize the individual βAR subtypes in murine heart for optimal genetic manipulation of their signaling pathways. However, a close inspection of the studies in murine models to date surprisingly reveals that although the contractile effects of mixed βAR or β₂AR stimulation have been characterized, the functionality of the β₂AR subtype at the cellular level has been ignored. In fact, whether β₂AR agonists can elicit a contractile response in murine myocardium has been a matter of debate. Specifically, in WT mice, the mixed βAR agonist ISO in the presence of the β₂AR antagonist CGP 20712A (CGP) has virtually no positive inotropic effect. In addition, in β₁AR knockout mice, the mixed βAR agonist ISO fails to increase cardiac contractility. Thus, it is possible that an inability of β₂AR stimulation by agonists to increase contractility in mouse heart per se masquerades as the observed “saturation” of β₂-adrenergic signaling in the TG4 mouse.

Our previous studies have shown that in native rat cardiac myocytes, pertussis toxin (PTX) pretreatment selectively potentiates the positive inotropic effect of β₁AR but not β₂AR stimulation, suggesting that β₂AR dually couples to G_i and to PTX-sensitive inhibitory G proteins. If the coupling of β₂AR-G_i protein in murine heart were highly efficient, it might be expected to completely negate the G_i-mediated positive inotropic effect. Thus, a strong coupling of β₂AR to G_i proteins in murine heart may explain the apparent and mysterious loss of β₂AR-mediated contractility.

The present study was undertaken to characterize the effects of agonist-induced β₂AR subtype stimulation on contraction, [Ca²⁺]_i transient, L-type Ca²⁺ currents (<i>I_{Ca}</i>), and activation of G proteins in both TG4 and WT ventricular myocytes. Surprisingly, β₂AR stimulation by ISO plus the β₂AR agonist CGP or by zisterol was not able to enhance the contraction amplitude in either WT or TG4 myocytes. An analysis of the G protein activation profile indicated that β₂AR stimulation in both WT and TG4 mice activated PTX-sensitive G proteins (G_i and G_q) in addition to G_s. Pretreatment of myocytes with PTX rescued potent contrac-
tile, [Ca²⁺]_i, and <i>I_{Ca}</i> responses to β₂AR agonists in WT as well as TG4 heart cells. These results indicate that in mouse ventricular myocytes, at normal or overexpressed receptor density, an activation of β₂AR-coupled G proteins prevents the positive inotropic effect of agonist-induced β₂AR stimulation.

Materials and Methods

Measurements of Cell Contraction and [Ca²⁺]_i Transient

Mouse ventricular myocytes were isolated from hearts of 2- to 3-month-old male transgenic mice overexpressing human β₂AR (TG4) and WT littermates via a modified enzymatic technique. Cells were then perfused with HEPES buffer solution consisting of (in mmol/L) CaCl₂ 1.0, NaCl 137, KCl 5, dextrose 15, MgSO₄ 1.3, NaH₂PO₄ 1.2, and HEPES 20 (pH 7.4) and were electrically stimulated at 0.5 Hz at 23°C. Cell length was monitored from the brightfield image of the cell by an optical edge-tracking method using a photodiode array (Reticon Model 1024 SAQ) with a 3-ms time resolution. Cell contraction was indexed by the percent reduc-
tion of cell length after electrical stimulation. In some experiments, cells were loaded with the fluorescent Ca²⁺ indicator Fluo-3 by incubation in 10 μmol/L Fluo-3 AM (Molecular Probes) for 10 minutes followed by a 20-minute wash. A laser scanning confocal microscope (Zeiss LSM410) was used to acquire fluorescence images every 2.09 ms along a line focused 5 to 10 μm into the cell. Both the Ca²⁺ signal and cell contraction were directly measured from the line-scan images using IDL (Research System) software. Criteria for viable myocytes have been described in our previous study and include (1) a rod shape, (2) clearly defined sarcomeric striations, (3) a clear negative staircase after a rest period of ~1.0 minute, and (4) a stable steady-state contraction amplitude for at least 5 minutes before drug administration.

I_{Ca} Measurements

I_{Ca} was measured via the whole-cell patch-clamp technique with the use of an Axopatch 1D amplifier (Axon Instruments Ltd). The resistance of electrode pipettes fabricated from the glass capillary tube (World Precision Instruments, Inc.) ranged between 1 and 2 MΩ. To selectively examine I_{Ca}, cells were voltage-clamped at ~40 mV to inactivate the Na⁺ current and T-type Ca²⁺ current. The K⁺ currents were inhibited by the appropriate blockers in the pipette solution containing (in mmol/L) CsCl 100, TEACl 20, NaCl 10, HEPES 10, MgATP 5, and EGTA 5; the pH was adjusted to 7.2 with CsOH. In some experiments, Rp-cAMPS (100 μmol/L), an inhibitory cAMP analog, was included in the patch pipette solution and dialyzed into the cell for more than 10 minutes, as previously described.

The superfusion solution was the same as that used for cell length and [Ca²⁺]_i transient measurements. I_{Ca} was elicited from a depolarization from ~40 to 0 mV and measured as the difference between the peak inward current and the current at the end of a 300-ms pulse.

Photolabeling of Membrane Proteins

Cardiac membranes were prepared by homogenizing WT and β₂AR overexpressing transgenic mouse (TG4) ventricles in ice-cold lysis buffer (20 mmol/L Tris-HCl [pH 7.4], 250 mmol/L sucrose, 1 mmol/L EDTA, 10 μg/mL aprotinin, 10 μg/mL leupeptin, and 0.1 mmol/L PMSF). The samples were centrifuged at 10 000 g for 10 minutes at 4°C. The supernatant was centrifuged at 100 000 g for 2 hours at 4°C. The pellet was resuspended up to a final protein concentration of 4.5 to 5 mg/mL in a buffer containing 20 mmol/L Tris-HCl (pH 7.4) and 1 mol/L EDTA. Membranes were aliquoted and stored at ~80°C.

[γ³²P]GTP-α-azidoanilide ([γ³²P]GTP-AzA) was synthesized and purified according to the procedure described previously with some modifications. Briefly, 100 μL of 30 mg/mL 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (N-DEG) (Fluka, Buchs, Switzerland) solution in 0.15 mol/L MES (pH 5.5) and 2 to 3 mCi of lypophilized [γ³²P]-GTP were mixed for 10 minutes at room temperature. Then 50 μL of 4-azidoanilide (40 mg/mL in 1.4-dioxane) was added to this mixture and kept at 25°C to 28°C for 3 hours with constant mixing. The synthesized [γ³²P]GTP-AzA was purified on a C-18 Sep-Pak Cartridge (Waters) and dried on a Speed-Vac Centri-fuge. The purity of the final product was >90%, checked by thin-layer chromatography on PEI cellulose with 1 mol/L LiCl. The dried [γ³²P]GTP-AzA was stored at ~25°C. All synthesis procedures were performed in a dark room with red light illumination.

Membrane proteins (40 to 50 μg) were preincubated at 25°C for 10 minutes in 20 mmol/L Tris-HCl (pH 7.5), 50 mmol/L NaCl, Mg₂CO₃, 0.2 mmol/L EGTA, 1.0 mmol/L benzamidine, 2 mmol/L MgCl₂, 1.0 mmol/L EDTA, and 50 μmol/L GDP to load G protein α subunits. βAR agonists or antagonists and 5 to 10 μCi of [γ³²P]GTP-AzA were then added to the samples and incubated for 4 minutes. The reaction was terminated by putting the samples on ice. All the subsequent procedures were performed at 4°C. After centrifugation (14 000 g for 10 minutes), membrane pellets were carefully resuspended in 50 μL of ice-cold buffer (20 mmol/L Tris-HCl [pH 7.4], 1 mmol/L EDTA, and 1 mmol/L diithiothreitol), transferred to individual dippers in aluminum foil, and irradiated with a UV lamp (254 nm, 100 W) for 10 minutes at a distance of 10 cm. The irradiated samples were centrifuged at 14 000 g for 30 minutes.
Immunoprecipitation of G Protein α Subunits

Immunoprecipitation of G protein α subunits was performed as previously described. Pellets of photolabeled membranes were solubilized in 40 μL of 2% SDS (wt/vol) at room temperature. Precipitation buffer (103 μL) containing 1% (wt/vol) Triton X-100, 1% (wt/vol) deoxycholate, 0.5% (wt/vol) SDS, 150 mmol/L NaCl, 1 mmol/L dithiothreitol, 1 mmol/L EDTA, 0.2 mmol/L PMSF, 10 μg/mL aprotinin, and 10 mmol/L Tris-Cl (pH 7.4) was added, and the solubilized membranes were centrifuged at 14,000g for 5 minutes at 4°C. Antisera (5 to 20 μL) was added to the supernatant. The samples were incubated overnight at 4°C under constant rotation. After adding washed protein A Sepharose beads, the samples were centrifuged at 14,000g for 5 minutes and washed with buffer A (1% [wt/vol] Igepal, 0.5% [wt/vol] SDS, 600 mmol/L NaCl, and 50 mmol/L Tris-Cl [pH 7.4]) and buffer B (300 mmol/L NaCl, 10 mmol/L EDTA, and 100 mmol/L Tris-Cl [pH 7.4]). The pellets of protein A Sepharose were dried with a Speed-Vac centrifuge. After a 15-minute incubation at room temperature, the samples were boiled for 10 minutes and centrifuged at 14,000g for 5 minutes. Thereafter, 20 μL of supernatants was subjected to SDS-PAGE electrophoresis according to Laemmli. The separating gel contained 9% acrylamide and 6 mol/L urea. Gels were stained with Coomassie blue. Photobleached proteins were visualized by autoradiography.

PTX Treatment

For contraction, [Ca2+] transient, and Isc measurements, aliquots of cells were incubated with PTX (1.5 μg/mL at 37°C for at least 3 hours), as previously described. PTX-treated cells were compared with nontreated control myocytes from the same heart that had been kept at 37°C in the absence of PTX for an equal time. After PTX treatment, both PTX-treated and nontreated cells were kept at room temperature for the rest of the experimental day (~6 to 8 hours). For biochemical measurements, mice were injected with PTX (150 μg/kg IP) 24 hours before the isolation of the hearts.

Materials

CGRP was kindly supplied by Ciba-Geigy Corp, Basel, Switzerland; ICI 118,551 (ICI) was kindly supplied by Imperial Chemical Industries, London, UK; and zinterol was kindly supplied by Bristol-Myers, Evansville, Ind. Antibodies recognizing the α subunits of Gi1 and Gi2 were obtained from Du Pont New England Nuclear (Wilmington, Del). The antibody recognizing the α subunits of Gi3 was obtained from Santa Cruz Biotechnology, Calif. In our experiments, the antibodies against Gi1 (from Santa Cruz) dominantly react with Gi2, because in most experiments, the molecular weight (MW) of the Gi1 antibody-precipitated proteins is slightly greater than that precipitated by the Gi2 antibodies, as expected. However, these antibodies may also slightly cross-react with Gi3. In some experiments, double bands are visible, but the lower MW band, which has the same MW as that of the proteins precipitated by Gi2 antibodies (Figure 8C and 8D), is always much lighter. In addition, the Gi2 antibody-precipitated proteins are mainly Gi2, even though this antibody may cross-react weakly with Gi3. The reason for this is that in our preliminary experiments, we have found that the abundance of Gi2 in murine myocardium is much lower than that of Gi3 and Gi1 and is difficult to detect by Western analysis (data not shown). Control peptides of the Gi2 antibody were obtained from Santa Cruz. PTX, forskolin, ISO, and norepinephrine (NE) were purchased from Sigma, St. Louis, Mo. Rp-cAMPS was purchased from Biolog Life Science Institute, La Jolla, Calif.

Statistics

Data reported are mean±SEM. Statistical comparisons were made by Student t test or paired t test when appropriate. Two-factor ANOVA was used to analyze the overall drug dose response. The significance between groups is analyzed by Bonferroni. A P value of <0.05 was considered to be statistically significant.

Results

Enhancement of Baseline Contractility of TG4 Ventricular Myocytes

In single ventricular myocytes isolated from TG4 or WT mice superfused with normal HEPES buffer solution with 1.0 mmol/L Ca2+, basal contractility was measured in the absence of any βAR agonists. Figure 1 shows that baseline contraction amplitude of TG4 cells was enhanced by 3.2-fold relative to myocytes isolated from WT mice. The enhanced baseline contractility was markedly reduced by ICI (5×10−7 mol/L), a β2AR inverse agonist (a class of receptor ligands that preferentially bind to inactive receptor, therefore driving the equilibrium between R and R* to the inactive conformation R), whereas ICI alone had no significant effect on WT cell basal contraction (Figure 1). However, there was no significant difference in the resting cell length between these 2 groups (144.5±5.6 μm, n=28 for TG4 versus 141.0±4.18 μm, n=22 for WT), consistent with the previous observations that the heart size is not changed in this transgenic model.

β2AR Agonists Fail to Increase Contractility of Either TG4 or WT Ventricular Myocytes

Despite the overwhelming expression (~200-fold of WT) of β2ARs in TG4 myocytes, the selective β2AR agonist zinterol, even at a maximal concentration (10−5 mol/L), was unable to further augment contraction amplitude (Figure 2A) or the [Ca2+] transient (not shown). The inability of β2AR stimulation to further increase contraction amplitude in TG4 myocytes might suggest that the stimulation of receptor, therefore driving the equilibrium between R and R* to the inactive conformation R), whereas ICI alone had no significant effect on WT cell basal contraction (Figure 1). However, there was no significant difference in the resting cell length between these 2 groups (144.5±5.6 μm, n=28 for TG4 versus 141.0±4.18 μm, n=22 for WT), consistent with the previous observations that the heart size is not changed in this transgenic model.

Despite the overwhelming expression (~200-fold of WT) of β2ARs in TG4 myocytes, the selective β2AR agonist zinterol, even at a maximal concentration (10−5 mol/L), was unable to further augment contraction amplitude (Figure 2A) or the [Ca2+] transient (not shown). The inability of β2AR stimulation to further increase contraction amplitude in TG4 myocytes might suggest that the stimulation of receptor, therefore driving the equilibrium between R and R* to the inactive conformation R), whereas ICI alone had no significant effect on WT cell basal contraction (Figure 1). However, there was no significant difference in the resting cell length between these 2 groups (144.5±5.6 μm, n=28 for TG4 versus 141.0±4.18 μm, n=22 for WT), consistent with the previous observations that the heart size is not changed in this transgenic model.
contractility in TG4 heart cells were saturated at baseline, no positive inotropic effect would be observed after forskolin treatment. To the contrary, Figure 2B illustrates that forskolin (10^{-6}\text{mol/L}) markedly and reversibly enhanced contraction amplitude in a representative TG4 ventricular myocyte. On average, forskolin increased TG4 cellular contraction by 2.4-fold (from 6.1±1.0% to 14.4±1.0% of resting cell length, n=5 cells from 3 hearts; P<0.01). This result indicates that both the excitation-contraction machinery and the βAR signaling cascade downstream of the cyclase remain intact and are not saturated at baseline in TG4 mice. Therefore, we hypothesized that the unresponsiveness of TG4 ventricular myocytes to βAR stimulation likely results from an impairment within the proximal βAR signaling cascade.

To identify possible alterations of cardiac β2AR signaling in TG4 mice, we next examined the effects of β2AR stimulation in WT heart cells. Surprisingly, β2AR stimulation by the mixed βAR agonist ISO (10^{-8}\text{mol/L}) plus the β2AR blocker CGP was also unable to augment contraction amplitude in WT mouse ventricular myocytes (Figure 3). In contrast, the mixed βAR stimulation by ISO alone or β2AR stimulation by ISO plus the β2AR blocker ICI markedly enhanced contraction amplitude in these WT myocytes (Figure 3), consistent with previous in vivo observations that ISO in WT mice enhances cardiac performance.1,7,21 Thus, the positive inotropic effect of ISO in WT cardiac myocytes or in vivo1,7,21 is largely, if not exclusively, mediated by β2AR subtype stimulation. Furthermore, as previously shown,8 the β2AR agonist NE plus the α1-adrenergic blocker prazosin (10^{-6}\text{mol/L}) produces a marked increase in contraction amplitude in these cells (Figure 4D). Again, the β2AR selective agonist zinterol at any concentration tested up to 10^{-5}\text{mol/L} failed to enhance contraction amplitude in WT mouse cardiomyocytes (Figure 5A), despite the fact that β2ARs constitute about 24% of the total βARs in WT mouse heart.1 Taken together, the results so far indicate that β2AR stimulation induced by either zinterol or by ISO plus β2AR blockade was unable to augment contraction in either WT or TG4 mouse cardiomyocytes, whereas β2AR agonists or adenylyl cyclase activators potently augmented the contraction amplitude in these cells. The next question, then, is why β2AR stimulation cannot increase mouse cardiac contractility.

Rescue of Contractile and [Ca^{2+}]_i Responses to β2AR Stimulation by PTX Treatment

Because reconstituted βARs can couple to both G\textsubscript{i} and G\textsubscript{s} proteins, PTX treatment selectively potentiates the β2AR-mediated contractile response.10,11,24 We hypothesized that a dual coupling of β2AR to an inhibitory G protein in addition to a G\textsubscript{s} protein might also exist in intact mouse ventricular myocytes and negate the contractile response mediated by the coupling to a G\textsubscript{i} protein. To test this hypothesis, cells were incubated with PTX to abrogate G\textsubscript{i}/G\textsubscript{o} function via ADP ribosylation. Indeed, PTX pretreatment unmasked a potent positive inotropic effect after β2AR stimulation in both TG4 and WT heart cells, as shown in Figure 4A and 4B, in a representative PTX-treated TG4 and WT ventricular myocyte, respectively. The zinterol-induced (10^{-8}\text{mol/L}) increase in contraction amplitude was completely abolished by the specific β2AR antagonist ICI (10^{-7}\text{mol/L}). In contrast, the β2AR antagonist CGP (10^{-8}\text{mol/L}) could not reverse the positive inotropic effect of zinterol (Figure 4C) but completely blocked the increase in contraction induced by the β2AR agonist NE (10^{-7}\text{mol/L}) (Figure 4D). These results indicate that the PTX-rescued
contractile response to zinterol is mediated by β2AR stimulation. The average dose response of contraction amplitude to the β2AR agonist zinterol is shown in Figure 5A and 5B for WT and TG4 cells, respectively. It is noteworthy that similar maximal contraction amplitude (≈15% of resting cell length) is obtained after zinterol in both PTX-treated WT and TG4 cells. Also note that the dose-response curve for PTX-treated TG4 cells is shifted leftward relative to that for WT cells (EC50 is ≈1.5×10⁻⁵ and 10⁻⁷ mol/L for TG4 and WT groups, respectively), consistent with previous observations in other species.11

Similar results were obtained from the other 4 WT and TG mice. These results suggest that the PTX-rescued murine cardiac β2AR function is mediated by a cAMP-dependent signaling pathway.

β2AR Stimulation Selectively Increases Gα Activation

The PTX sensitivity of the β2AR effect in murine (Figure 5) and rat hearts10,11,24 suggest that cardiac β2AR couples to Gα proteins. However, these results neither prove a direct interaction of β2AR and Gα proteins nor identify which specific Gα proteins couple to β2AR. Theoretically, the effect of PTX could be the consequence of disruption of tonic inhibitory actions of Gα proteins. To determine the interaction of β2AR and Gα proteins directly and to identify which specific PTX-sensitive Gα proteins are involved, we measured the Gα protein activation by photoaffinity labeling α subunits of Gα proteins with the photoreactive GTP analog [γ-³²P]GTP-AzA.17 As the binding of an agonist to G protein-coupled receptors increases the rate of exchange of GTP for GDP on G protein α subunits (see Reference 25 for a review), the magnitude to which [γ-³²P]GTP-AzA incorporates into α subunits of Gα proteins affords a direct assessment of Gα protein activation in response to receptor stimulation. Subse-
PTX-Treated Cells

Figure 6. Effect of the selective β_2AR agonist zinterol (ZINT, 10^{-6} mol/L) on the simultaneously recorded contraction and [Ca$^{2+}$]$_i$ transient in PTX-treated TG4 and WT mouse ventricular myocytes. A and B, Typical examples of the effects of zinterol on [Ca$^{2+}$]$_i$ transient (top, indexed by fold increase of Fluo-3 fluorescence [F/Fo]) and contraction amplitude (bottom) in PTX-treated WT and TG4 heart cells, respectively. Traces obtained before application of zinterol are indicated as control. C and D, Mean data for Ca$^{2+}$ transient and contraction amplitude, respectively, before and after zinterol (n = 8, *P* < 0.01, zinterol vs control; †P < 0.01, TG4 vs WT).

Discussion

Concurrent Coupling of β_2AR to G_i Proteins Negates the β_2AR-G_i-Mediated Contractile Response

Using a photoaffinity labeling technique in conjunction with specific antibodies of different G proteins, we found that β_2AR stimulation increases activation of G_i proteins G_{i2} and G_{i3} (Figures 8E and 9A), and this activation was specifically abolished by the β_2AR antagonist ICI but not by the selective β_2AR antagonist CGP (Figures 8E and 9A). Similarly, the β_2AR antagonist NE (10^{-6} mol/L) had no significant effects on G_i activation (Figure 9B). Thus, the G_i coupling is specific for β_2AR in both WT and TG4 myocardium. Finally, the β_2AR-stimulated G_i activation was prevented by PTX treatment in both TG4 and WT mice (Figures 8F and 9B). Taken together, the present biochemical data, in conjunction with the physiological data described above, provide direct and compelling evidence that β_2ARs but not β_1ARs in native myocardium couple to PTX-sensitive G proteins G_{i2} and G_{i3}.

quent precipitation with specific antisera was carried out to determine which specific G protein(s) was activated during β_2AR stimulation.

As expected, the incorporation of [γ-32P]GTP-AzA into α subunits of G was clearly increased in WT mouse cardiac membranes after β_2AR stimulation by zinterol. On average, the signal was enhanced by 1.5-fold (157.66±21.15% of control, n = 7; *P* < 0.05) in response to zinterol. Meanwhile, the β_2AR agonist zinterol increased the incorporation of [γ-32P]GTP-AzA into the α subunits of G_{i2} and G_{i3} (Figure 8A through 8D), without affecting the incorporation into G_a or G_{11} proteins (data not shown). On average, zinterol (10^{-5} mol/L) increased the incorporation of [γ-32P]GTP-AzA into α subunits of G_{i2} and G_{i3} to 146.3±8.8% of control (P < 0.01, n = 12) and 148.9±5.6% of control (P < 0.01, n = 13), respectively, in TG4 cardiomyocytes (Figure 9A). Similar results were obtained from WT mouse myocardium (Figure 9B). The magnitude of the β_2AR-induced increases in the α subunits of G_{i0} and G_{i2} photolabeling is similar to that induced by the muscarinic acetylcholine receptor agonist carbachol (10^{-5} mol/L) (Figures 8A and 9B). The stimulatory effect of the β_2AR agonist was specifically and significantly abolished by the β_2AR antagonist ICI (Figures 8C, 8D, and 9A). Furthermore, the nonselective β_2AR agonist ISO also clearly enhanced the incorporation of [γ-32P]GTP-AzA into α subunits of both G_{i2} and G_{i3} (Figures 8E and 9A), and this activation was specifically abolished by the β_2AR antagonist ICI but not by the selective β_2AR antagonist CGP (Figures 8E and 9A).

β_2AR agonist ISO also clearly enhanced the incorporation of [γ-32P]GTP-AzA into α subunits of both G_{i2} and G_{i3} (Figures 8E and 9A), and this activation was specifically abolished by the β_2AR antagonist ICI but not by the selective β_2AR antagonist CGP (Figures 8E and 9A). Similarly, the β_2AR agonist NE (10^{-6} mol/L) had no significant effects on G_i activation (Figure 9B). Thus, the G_i coupling is specific for β_2AR in both WT and TG4 myocardium. Finally, the β_2AR-stimulated G_i activation was prevented by PTX treatment in both TG4 and WT mice (Figures 8F and 9B). Taken together, the present biochemical data, in conjunction with the physiological data described above, provide direct and compelling evidence that β_2ARs but not β_1ARs in native myocardium couple to PTX-sensitive G proteins G_{i2} and G_{i3}.

Figure 7. Inhibition of PTX-rescued I_{ca} response to β_2AR stimulation by the specific PKA inhibitor Rp-cAMPS in both TG4 and WT myocytes. Left panels, Superimposed traces of I_{ca} in the absence (con, thin line) and presence (thick line) of the β_2AR agonist zinterol (zint, 10^{-6} mol/L). Right panels, Results obtained in the presence of the PKA inhibitor Rp-cAMPS (100μmol/L included in pipette solution).
myocytes further reveals that the β2-AR-Gi coupling completely negates the Gβγ-mediated contractile response over a wide range of receptor densities and agonist concentrations. Thus, the concurrent coupling of β1-ARs to Gi proteins provides an explanation for the “mysterious” loss of agonist-induced βAR contractile response in TG4 and WT murine hearts.1,7,21 In addition, similar reasoning may also be applicable to explain the unresponsiveness of cardiac contractility to βAR stimulation in the β1AR “knockout” mouse model,9 as well as in myocardium of other mammalian species (e.g., guinea pig), in which β1ARs are present but nonfunctional in terms of cardiac contractile modulation.26,27

PTX-Rescued Murine Cardiac β2-AR Function Requires cAMP-Dependent PKA Activation

There is plenty of evidence indicating a coupling of β2AR to adenyl cyclase to increase cAMP11,24,29 In the present study and previous studies, the specific cAMP inhibitory analog Rp-cAMPS prevented the β2AR-stimulated increase in Ic, in PTX-treated TG4 and WT myocytes (Figure 7) and in rat heart cells (with or without PTX).11,30 However, β2AR does not behave the same way as β1AR with respect to coupling to G proteins under our experimental conditions (Figures 8 and 9). Similarly, our previous studies have shown that in rat ventricular myocytes, PTX pretreatment selectively enhances the positive inotropic effect induced by both β2AR and β2AR subtypes are mediated by cAMP-PKA signaling pathways.11,30 However, β2AR does not behave the same way as β1AR with respect to coupling to G proteins under our experimental conditions (Figures 8 and 9). Similarly, our previous studies have shown that in rat ventricular myocytes, PTX pretreatment selectively enhances the positive inotropic effect induced by both β2AR and β2AR subtypes are mediated by cAMP-PKA signaling pathways.11,30 However, β2AR does not behave the same way as β1AR with respect to coupling to G proteins under our experimental conditions (Figures 8 and 9).

Dual Coupling of β2AR to Gβγ Proteins Mediates the Difference Between βAR Subtypes and the Species-Dependent Diversity in Cardiac β2AR Responses

The coupling of β2AR to G proteins is not unique to native murine β2AR or to human β2AR surrogated in mouse cardiac myocytes. Our previous studies have shown that although stimulation of both β2AR and β2AR increases the contraction amplitude in rat and canine ventricular myocytes, numerous
differences have been noted. Specifically, the β₂-AR- but not the β₁-AR-stimulated positive inotropic effect and increase in cytosolic Ca²⁺ transient are dissociated from cAMP production and occur without increasing phosphorylation of cytoplasmic proteins, eg, the sarcoplasmic reticulum membrane protein phospholamban.interestingly, in rat myocytes, PTX treatment not only potentiates the positive inotropic effect of β₂-AR stimulation, it also largely reverses the differences between β₁-AR and β₂-AR-^{11,13} indicating that β₂-AR-activated G_i proteins play a key role in the differential cardiac response to β₂-AR versus β₁-AR subtype stimulation. A similar potentiating effect of PTX on β₂-AR contractile response has also been observed in normal canine ventricular myocytes (Zhou et al, unpublished data, 1998). These results reinforce the idea that the concurrent coupling of β₁-AR to functionally opposing G proteins is a universal phenomenon in mammalian hearts.

In murine cardiomyocytes, PTX permits a de novo contractile response (Figure 5). In contrast to mice, PTX pretreatment only augments an already extant positive β₂-AR contractile response in other species examined. This diversity in cardiac β₂-AR stimulation among species or within species under different circumstances may be largely accounted for on the basis of quantitative differences in the extent of β₂-AR-G_i coupling. For example, the β₂-AR-G_i coupling would be expected to be extremely robust in mouse heart, as manifested by the absence of a β₂-AR-mediated positive inotropic effect without PTX pretreatment. In rat, an augmentation of the extent of β₂-AR coupling to G_i proteins during development could explain the greater sensitivity of neonatal than that of adult heart cells to β₂-AR activation in the absence of PTX. The difference between β₁-AR and β₂-AR in their G protein coupling profiles may also provide new insight for understanding the role of β₂-AR subtypes in health and diseased mammalian heart (References 12 through 15; also see subsequent sections).

Peculiar Features of TG4 Myocytes

The results of the present study show that TG4 mouse ventricular myocytes overexpressing human β₂-AR exhibit a markedly enhanced baseline contractility, which can be reversed by the inverse β₂-AR agonist ICI (Figure 1). Because our experiments were conducted in superfused single, isolated ventricular myocytes, possible endogenous catecholamine contamination, which might complicate the interpretation of observations of previous studies in vivo and in isolated atria, can be completely ruled out. Thus, the results of the present study confirm and extend previous studies and provide evidence at the single cell level for the functional existence of spontaneous active β₂-ARs in TG4 mice. Conceptually, a small fraction of receptors undergoes spontaneous transition to an active state (R[*]) at any time, even in the absence of agonist. The ~200-fold overexpression of the β₂-AR in TG4 hearts results in more receptors in the R[*] state, which constitute increase basal adenyl cyclase activity and baseline cellular contractility (Figure 1).

The results of the present study also show that the inability of β₁-AR agonists to augment the contractility of TG4 cardiomyocytes cannot be explained by a saturation of contractility at baseline. The reason for this is that the adenyl cyclase activator forskolin can further increase contraction amplitude over the enhanced basal contraction, indicating that the cAMP-PKA signaling is still capable of modulating the contractility of TG4 heart cells. More importantly, the lack of β₂-AR positive inotropic effect was also observed in WT mouse myocytes, indicating that the null contractile response to β₂-AR agonists has nothing to do with the receptor overexpression or chronic spontaneous β₂-AR activation in the transgenic model, but it is a fundamental property of β₂-AR signaling in murine heart. In addition, the results of the present study indicate that the β₂-AR-G_i coupling is retained over a wide range of β₂-AR densities and agonist concentrations.

Another peculiar feature of TG4 hearts is an absence of contractile response to β₁-AR stimulation, as manifested by the inability of β₁-AR stimulation by NE or ISO in vivo or in vitro or the inability of ISO plus the β₂-AR blocker ICI to increase cardiac contractility in single isolated myocytes (data not shown). Although PTX treatment fully rescued the β₂-AR responsiveness in TG4 cardiomyocytes, it was not able to rescue the lost cardiac response to β₂-AR stimulation in these transgenic mice (data not shown). This is consistent with the observation that β₂-AR does not couple to G_i proteins (Figures 8 and 9). These results suggest that a different mechanism might be involved in the subsensitivity of TG4 hearts to β₂-AR stimulation (eg, desensitization of the receptor via an enhanced basal PKA-dependent receptor phosphorylation or by the β₂-adrenergic receptor kinase βARK^{2,31,32}).

Do Spontaneous Active β₂-ARs Differ From Ligand-Stimulated β₂-ARs?

According to the current “two-state” model of receptor theory, receptors exist in equilibrium of an inactive state (R) and an active state (R[*]) in terms of the ability to interact with G proteins. This model predicts that spontaneous active receptors should be identical to ligand-stimulated active receptor species (LR[*]), given that there is a sole active state. The results of the present study, however, provide several lines of evidence to suggest that spontaneously activated β₂-AR may differ from the ligand-stimulated β₂-AR. First, whereas spontaneous active β₂-ARs in TG4 heart, presumably only a small fraction of total receptor population, increased the cell contractility by about 3-fold, β₂-AR agonists, at maximal concentrations that would be expected to occupy a large quantity of the excessive β₂-ARs in TG4 cells, were unable to further increase contraction amplitude, even though the cell contractility and βAR-cAMP signaling are not saturated. Second, PTX treatment only slightly potentiated the basal contractility (in TG4 cells only) but had a disproportionately large potentiating effect on the agonist-stimulated contractile response in both TG4 and WT heart cells (Figure 5), suggesting that the spontaneously activated β₂-AR, unlike the agonist activated β₂-AR, only weakly couples or does not couple to G_i proteins. In this respect, recent studies in transgenic mice with high or medium overexpression of cardiac β₂-AR have demonstrated that spontaneously activated β₂-ARs coprecipitate with G_i but not G_i/G_{i6} proteins in the absence of agonist. Our preliminary data have also consis-
tently shown that the \(\beta_2 \)-AR inverse agonist ICI (5×10^{-7} mol/L) reduced the basal incorporation of \([\gamma^{-32}]\)GTP-Aza into \(\alpha_2 \) subunits of G\(_i\), but not G\(_\beta\) proteins in TG4 mice (Avdonin et al, unpublished data, 1998). Taken together, we suggest that spontaneous active \(\beta_2 \)-ARs are predominantly coupled to G\(_i\), with little or no coupling to G\(\beta \), whereas the ligand-activated \(\beta_2 \)-ARs couple to both G\(_i\) and G\(\beta \) proteins. The distinct difference between the spontaneous and ligand-induced active \(\beta_2 \)-ARs demonstrated in the present study and in previous studies of murine myocardium requires a reformulation of the current model\(^7\) to describe receptor-G protein coupling in the physiological context.

Implications of \(\beta_2 \)-AR-G\(_i\) Coupling in the Heart

In addition to modulating the \(\beta_2 \)-AR-G\(_i\)-mediated enhancement in cardiac contractility, the \(\beta_2 \)-AR-stimulated G\(_i\) activation might have chronic effects, eg, cellular metabolism or excitability or cell growth, which requires additional investigations. In this regard, it is intriguing that \(\beta_2 \)-AR overexpression in TG4 mice is not associated with a cardiac or cellular hypertrophy\(^1\) and exhibits no change in the size of single isolated cardiomyocytes (as shown in the present study), whereas a genetic manipulation of G\(_i\)-cAMP signaling system\(^2\) or chronic \(\beta_2 \)-AR stimulation by agonists\(^34,35\) is often associated with cardiac hypertrophy or heart failure. Thus, we speculate that \(\beta_2 \)-AR subtypes may differentially regulate cell growth as a result of the additional \(\beta_2 \)-AR-G\(_i\) coupling. In addition, it has been shown that inhibition of G\(_i\) function by PTX treatment increases the occurrence of spontaneous cell contractions in rat ventricular myocytes\(^10\) and arrhythmia in intact rats (Eschenhagen et al, unpublished data, 1998) during \(\beta_2 \)-AR agonist stimulation. Thus, an activation of the \(\beta_2 \)-AR-coupled G\(_i\) proteins may have some cardiac protective functions.

The demonstration that \(\beta_2 \)-AR couples to G\(_i\) and G\(\beta \) also provides new insights for the pathogenesis of heart failure. It is generally acknowledged that heart failure in human and animal models is characterized by a deterioration in cardiac contractility and a reduced catecholamine responsiveness, which are associated with an increase in G\(_i\) mRNA levels,\(^36\) G\(_i\) activity as indicated by PTX-induced ribosylation\(^37\) or G\(_i\) protein amount in human\(^38\) or in animal models\(^39\) and an increase in the ratio of \(\beta_2 \)-AR to \(\beta_2 \)-AR as a result of a selective downregulation of \(\beta_2 \)-ARs.\(^40-42\) It has been proposed that the upregulation of G\(_i\) proteins may contribute to the suppressed \(\beta_2 \)-AR, particularly \(\beta_2 \)-AR, contractile response in the failing hearts.\(^36-39\) However, this hypothesis has not been directly examined, because most previous studies failed to determine whether the increased G\(_i\) activity differentially affected \(\beta_2 \)-AR subtype signaling. On the basis of biochemical and physiological evidence for a coupling of \(\beta_2 \)-AR to G\(_i\) proteins (References 10 and 11 and the present study), it is possible that, on one hand, the upregulation of G\(_i\) proteins could protect the diseased heart from Ca\(^{2+}\) overloading and arrhythmia; and on the other hand, the upregulated G\(_i\) signaling in failing hearts could offset or mask the \(\beta_2 \)-AR-stimulated positive inotropic effect, resulting in an attenuation or loss of the overall \(\beta_2 \)-AR-mediated inotropic response. Additional studies are required to test these provocative hypotheses.

In summary, we demonstrate that \(\beta_2 \)-AR stimulation cannot augment contractile function in isolated single WT or receptor overexpression transgenic (TG4) cardiac myocytes, although spontaneous \(\beta_2 \)-AR activation enhances the baseline contractility of TG4 myocytes. We also provide the first biochemical evidence that in murine cardiac myocytes, \(\beta_2 \)-AR is dually coupled to inhibitory G proteins G\(_\alpha_2\) and G\(_\alpha_3\) in addition to G\(_i\). PTX treatment permits \(\beta_2 \)-AR stimulation to induce a robust augmentation in contraction, associated with an increase in I\(_c\) and [Ca\(^{2+}\)]\(_i\) transient. The PTX-restored cardiac \(\beta_2 \)-AR response can be reversed by the inhibitory cAMP analog Rp-cAMPS. Thus, the \(\beta_2 \)-AR-coupled G\(_i\) pathway exerts a strong negative feedback to the \(\beta_2 \)-AR-mediated, cAMP-dependent cardiac contractile and [Ca\(^{2+}\)] transient and I\(_c\) responses. These findings may have important implications not only for understanding signaling mechanisms and functionality of cardiac \(\beta_2 \)-AR subtypes but also for devising future strategies for the treatment of human heart failure via genetic therapy.

Acknowledgment

P. Avdonin was partially supported by the Russian Foundation for Basic Research (grant No. 96-04-49921).

References

12. Xiao R-P, Lakatta EG. \(\beta_2 \)-Adrenoceptor stimulation and \(\beta_2 \)-adrenoceptor stimulation differ in their effects on contraction, cytosolic calcium, and...
52 β2-Adrenoceptor Couples to Gi and Gq Proteins

17. Offermanns S, Schultz G, Rosenthal W. Identification of receptor-acti-
vated G proteins with photoreactive GTP analog, [α-32P]GTP azidoa-
22. Asano T, Katada T, Gilman AG, Ross EM. Activation of the inhibitory
response without changes in inhibitory G proteins or receptor kinases. Circ Res. 1990;40–51.
29. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Larie K, Billingham ME, Harrison DC, Stinson EB. Decreased catechol-
Coupling of β2-Adrenoceptor to Gα Proteins and Its Physiological Relevance in Murine Cardiac Myocytes

Rui-Ping Xiao, Pavel Avdonin, Ying-Ying Zhou, Heping Cheng, Shahab A. Akhter, Thomas Eschenhagen, Robert J. Lefkowitz, Walter J. Koch and Edward G. Lakatta

Circ Res. 1999;84:43-52
doi: 10.1161/01.RES.84.1.43

Circulation Research is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7330. Online ISSN: 1524-4571

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circres.ahajournals.org/content/84/1/43

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Circulation Research can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Circulation Research is online at:
http://circres.ahajournals.org//subscriptions/